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Microgrid works as a local energy provider for domestic buildings to reduce energy expenses and gas
emissions by utilising distributed energy resources (DERs). The rapid advances in computing and com-
munication capabilities enable the concept smart buildings become possible. Most energy-consuming
household tasks do not need to be performed at specific times but rather within a preferred time. If these
types of tasks can be coordinated among multiple homes so that they do not all occur at the same time
yet still satisfy customers’ requirement, the energy cost and power peak demand could be reduced. In this
paper, the optimal scheduling of smart homes’ energy consumption is studied using a mixed integer lin-
ear programming (MILP) approach. In order to minimise a 1-day forecasted energy consumption cost,
DER operation and electricity-consumption household tasks are scheduled based on real-time electricity
pricing, electricity task time window and forecasted renewable energy output. Peak demand charge
scheme is also adopted to reduce the peak demand from grid. Two numerical examples on smart build-
ings of 30 homes and 90 homes with their own microgrid indicate the possibility of cost savings and elec-
tricity consumption scheduling peak reduction through the energy consumption and better management
of DER operation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the increase of energy demand and rising global emis-
sions of greenhouse gases, the current centralised generation sys-
tem is challenged. The future electricity distribution system will
be integrated, intelligent and better known as smart grid, which in-
cludes advanced digital metres, distribution automation, commu-
nication systems and distributed energy resources. The desired
smart grid functionalities include self-healing, optimising asset
utilisation and minimising operations and maintenance expenses
[1]. Microgrid is a relatively small-scale localised energy network,
which includes loads, network control system and a set of distrib-
uted energy resources (DERs), such as generators and energy stor-
age devices. A microgrid can operate in either grid connected or
islanded mode1 when there are external faults and/or to gain eco-
nomic advantage. A microgrid equipped with intelligent elements
from smart grid has been adopted to enable the widespread of DERs
and demand response programs in distribution systems [2], which is
considered as future smart grid. Microgrid has an economic incen-
tive due to avoiding energy purchases during peak periods and cre-
ation of carbon benefits through low-carbon/low-pollutant
generation and co-production of heat and power, which has higher
energy efficiency. It also provides secure and reliable energy supply
during serious blackout period as a back-up energy supplying
system.

Several studies have considered how to design the capacity of a
microgrid system to minimise the annual cost. Comprehensive re-
view of the research on microgrid technology, the current research
projects and the relevant standards is given by [3], in which pilot
projects and further research are discussed. The optimal choice of
the investment and optimisation of run-time operational schedules
is presented for commercial-building microgrids in [4], where elec-
trical storage and thermal storage are integrated in Distributed En-
ergy Resources Customer Adoption Model (DER-CAM). Asano et al.
[5] develop a methodology to design the number and capacity of
each equipment in a microgrid with combined heat and power
(CHP) system considering partial load efficiency of a gas engine
and its scale economy are considered to minimise the annual cost.
A baseline analysis estimating the economic benefits of microgrids
is performed by King and Morgan [6], and the examined results
indicate that better overall system efficiency and cost savings can
be achieved from a good mix of customer types. A computer pro-
gram that optimises the equipment arrangement of each building
linked to a fuel cell network and the path of the hot-water piping
network under the cost minimisation objective has also been
developed in [7], where operation plan of each piece of equipment
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is considered. Bagherian and Tafreshi [8] present energy manage-
ment systems and optimal scheduling of microgrid. The optimal
decisions, including the use of generators for power and heat pro-
duction, storage system scheduling, proper load management and
local grid power selling and purchasing for next day, are deter-
mined by maximising the profit. A generalised formulation to
determine the optimal strategy and cost optimisation scheme for
a microgrid is shown in [9], accounting for emission cost, start-
up costs, operation cost and maintenance costs. Optimal economic
operation scheduling of a microgrid in an isolated load area is ob-
tained by mixed integer linear programming (MILP) model in [10],
and a Virtual Power Producer (VPP) is used to operate the genera-
tion units optimally and the methodology is applied to a real
microgrid case study. A short-term DER management methodology
in smart grids is presented by [11], which involves as short as
5 min ahead scheduling and the previously obtained schedule is
rescheduled accordingly. A Genetic Algorithm (GA) approach is
used for optimisation. Hawkes and Leach [12] present a linear pro-
gramming (LP) model to minimise the cost for the high level sys-
tem design and corresponding unit commitment of generators
and storages within a microgrid. Compared with centralised gener-
ation, the sensitivity analysis of results to variations in energy
prices indicates a microgrid can offer an economic proposition.
This model can provide both the optimal capacities of candidate
technologies and the operating schedule.

As the energy consumption by buildings represents 30–40% of
the world’s primary energy consumption [13], smart planning of
energy supply to buildings is important to conserve energy and pro-
tect the environment. Basic actions to improve energy efficiency in
commercial buildings in operation are presented in [14]. Domestic
energy consumption depends on the dwelling physical properties,
such as location, design and construction, as well as appliances’ effi-
ciency and occupants’ behaviour. By changing the living behaviour
itself, there can be 10–30% energy consumption reduction [15].
More importantly, the liberalisation of electricity markets results
in electricity hourly or half-hourly prices and real-time electricity
prices encourage consumers to get involved in searching for opti-
mal power consumption way to save their energy costs [16].

This paper considers a smart residential building with its own
microgrid, DER and automation system. Smart building is becom-
ing more attractive and viable in the building industry while meet-
ing both desires of comfort and energy savings. The idea of the
smart home originated from the concept of home automation,
which provides some common benefits to the end users, including
lower energy costs, provision of comfort, security and home-based
health care and assistance to elderly or disabled users [17]. Smart
homes with automation operations are becoming capable along
with the technology development, where heating or lighting can
be controlled according to the presence of customers [18]. Particle
swarm optimisation (PSO) algorithm is applied to the load balanc-
ing problem in smart homes in [19], where the optimal distribu-
tion of energy resources is determined by an adapted version of
the Binary PSO. A method based on LP techniques is proposed for
economic evaluation of microgrids from the consumer’s point of
view in [20]. Operation of distributed generators and energy stor-
age systems are optimised and power interruption costs together
with additional expenses to construct the microgrid itself are in-
volved. Some work has also been done to achieve the energy con-
servation and management perspectives. A multi-agent system for
energy resource scheduling of an islanded power system with
microgrid is proposed by [21], with an objective to manage the re-
sources efficiently and obtain the minimum operation cost while
satisfying the internal demand. A dynamic decision model is pre-
sented by [22] to optimise energy flows in a green building with
a hybrid energy system, which involves different renewable energy
sources. A fuzzy controller is developed and the Man Machine
Interface is integrated with Building Energy Management systems
to improve the indoor environmental conditions with minimum
energy needs [23]. While in [24], an MILP model is developed for
scheduling operations in microgrids connected to the national grid
to analyse potential policies. A linear diversity constraint is intro-
duced to maintain diversity in the generation of electricity from
multiple resources on the production schedule. An energy manage-
ment and warning system for resident has been proposed for en-
ergy saving in [25], which monitors the power usage and warns
the users when the power usage is getting close to the monthly
prescribed energy usage levels. The electric power dispatch optimi-
sation problem is solved by the genetic algorithm approach by
[26], the proposed model determines the optimum operation of a
microgrid for residential application under environmental and eco-
nomic concerns. However, these scheduling optimisation models
only consider operation scheduling based on given energy profile
rather than scheduling the energy demand.

Scheduling tasks subject to limited resources is a well known
problem in many areas of the process industry and other fields,
but there are differences when considering the scheduling of elec-
trical appliances. Different time representations and mathematical
models for process scheduling problems are summarised in [27].
Four time representations are presented with strengthened formu-
lations which are compared in different scheduling problems.
While short-term and medium-term scheduling of a large-scale
industrial continuous plant is addressed in [28]. A systematic
framework is proposed there and applied on an industrial contin-
uous plant to utilise the main units efficiently. Maravelias and Sung
[29] reviewed the integration of production planning and schedul-
ing problem, while key concepts and advantages/disadvantages of
different modelling methods are presented. Sun and Huang [30] re-
viewed energy optimisation methods for energy management in
smart homes, such as fuzzy logics, neural network and evolution-
ary approaches. Hybrid intelligent control systems for generating
control rules is recommended for further study and works consid-
ering scheduling of appliance operation time are also included. An
MILP based smart residential appliance scheduling framework is
proposed in [31], where electricity is solely bought from grid and
the tariff is known 24 h in advance. Another work for scheduling
the operation of smart appliances is presented by [32], where the
savings from energy is maximised by shifting domestic loads with
real-time pricing. A peak-load shaving online scheduling frame-
work is proposed by [33], and the power consumption scheduling
is developed in a systematic manner by introducing a generic
appliance model. Scheduling of both energy generation and loads
has been studied for single smart home in recent works. The
operation of an Electrical Demand-Side management system is
presented by [34], where deferrable and no-deferrable tasks
commanded by the user are scheduled for 1 day of a house with
PV generation. Kriett and Salani [35] propose a generic mixed
integer linear programming model to minimise the operating cost
of both electrical and thermal supply and demand in a residential
microgrid. A real-time price-based demand response management
application is presented by [36] for residential appliances in a
single house to determine the optimal operation in the next
5-min time interval by considering future electricity price
uncertainties, stochastic optimisation and robust optimisation
approaches have been applied. An optimal and automatic residen-
tial load commitment framework is proposed by [37] to minimise
household payment, which determines on/off status of appliances,
charging/discharging of battery storage and plug-in hybrid
electric vehicles. Derin and Ferrante [38] develop a model that
considers both operation scheduling and electricity consumption
tasks order scheduling. But their results indicate relatively high
computation time, over 35 min, to schedule only three electricity
consumption tasks.
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In this work, to extend the scope of single smart home energy
management, a smart building composed of multiple smart homes
is considered. An MILP model is proposed to minimise the total
1-day-ahead expense of a smart building’s energy consumption,
including operation and energy costs. A microgrid is available to
provide electricity and heat for the smart building, and the smart
homes share the common DERs from the microgrid. Both the oper-
ations of the DERs and the domestic appliances with their specific
energy consumption profiles are scheduled. The scheduling is
based on real-time electricity prices at each time interval, renew-
able energy output forecast, subject to the constraints at the earli-
est starting time and latest ending time for each appliance
provided by the consumers. Scheduling of operations within a
microgrid based on real-time electricity price and distributed and
diverse energy sources is suggested with the objective of minimis-
ing cost. Peak demand charge scheme is also applied to reduce the
peak electricity demand from grid. When the demand is below an
agreed threshold, the real-time pricing is used; while the demand
is over the threshold, then an extra fee is charged to the over-
threshold amount. Production of electricity and heat is scheduled
on the electricity production from generators, boilers, electricity
purchase from and sale to the grid, storage of heat and battery
usage. Heat demand is static and assumed to be available from pre-
diction while electricity demand is managed by the scheduling of
electrical appliance tasks.

The remainder of this paper is organised as follows. In Section 2,
the problem is described briefly with relevant assumptions, con-
straints and objective. In Section 3, the mathematical model is pro-
vided. Then in Section 4, the proposed model is applied to two
illustrative examples. The computational results are presented
and discussed in Section 5. Finally, conclusions are given in
Section 6.
2. Problem description

In this paper, a smart building with a number of smart homes is
considered. Example of such smart building is given in Fig. 1. It is
Smart homes 
management

Electrical storage Boiler

Grid

Electrical cars

Fig. 1. Example of s
assumed to have its own microgrid to provide energy locally,
which includes some DERs, such as CHP generator, boiler, wind
generator, thermal storage and electrical storage. All homes in
the building share common microgrid DERs. It also has a grid con-
nection to obtain electricity during power demand peak hours or
sell electricity to the grid when there is surplus electricity genera-
tion. Each home has a number of domestic appliances, such as
dishwasher, washing machine and oven. The building is assumed
to have an energy management system, local controllers for each
DER and communication system to distribute the energy consump-
tion scheme. Since the model presented in this work only provides
the optimal scheduling for 1 day, equipment capacity selection is
not considered here, and all the equipment capacities are given.
The real-time electricity price profile from the grid is known and
varies within a day. Peak demand charge for the over consumed
electricity from the grid is given. It is also assumed that weather
forecast can provide 24 h wind speed data. Heat demand of the
whole building is given while the electricity demand depends on
the operation of domestic appliances.

The overall problem can be stated as follows:
Given are (a) a time horizon split into a number of equal inter-

vals, (b) heat demand of the whole building, (c) equipment capac-
ities, (d) efficiencies of technologies, (e) maintenance cost of all
equipment, (f) heat-to-power ratio of CHP generator, (g) charge
and discharge limit rates for thermal/electrical storage, (h) gas
price, real-time electricity prices from grid and peak demand
charge price to the over-threshold amount, (i) peak demand
threshold from grid, (j) wind speed, (k) earliest starting and latest
finishing times, (l) task capacity profiles, (m) task duration.

Determine (a) energy production plan, (b) task starting time, (c)
thermal/electrical storage plan, (d) electricity bought from grid, (e)
electricity sold to grid.

So as to (a) minimise daily total cost.

3. Mathematical model

The smart homes power consumption scheduling problem is
formulated as an MILP model. The daily power consumption tasks
Thermal storage

CHP generator

Wind turbines

Domestic appliances

mart building.
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are scheduled based on their given operation time windows,
which is defined as the time period between the earliest starting
time and latest finishing time of each task. The objective is to
minimise the daily total cost and reduce the power consumption
peak from grid. The time domain is modelled in a discrete form
with intervals of equal length. The key model decision variables
include equipment operation, resources utilised and task starting
time. These are determined by minimising the daily total cost of
all homes subject to equipment capacity constraints, energy
demand constraints, electrical/thermal storage constraints and
task operation time window.

A list of the notation used in the MILP model is given below, the
superscript is used to indicate equipment and the subscript is used
for indices:

Indices

i
 task

j
 home in the smart building

t
 time interval

h
 task operation period
Parameters

A
 wind generator blade area (m2)

bt
 electricity buying price from grid at time t (£/kW he)

Ci
 constant power consumption capacity of task i (kWe)

Cih
 power consumption capacity of task i at operation

period h (kWe)

CCHP
 CHP generator capacity (kWe)

CW
 wind generator capacity (kWe)

CB
 boiler capacity (kWth)

CE
 electrical storage capacity (kW he)

CT
 thermal storage capacity (kW hth)

DE
 electrical storage discharge limit (kWe)

DT
 thermal storage discharge limit (kWth)

GE
 electrical storage charge limit (kWe)

GT
 thermal storage charge limit (kWth)

Ht
 heat demand at time t (kWth)

mE
 cost per unit input (maintenance) for electrical

storage unit (£/kW he)

mT
 cost per unit input (maintenance) for thermal storage

unit (£/kW hth)

mW
 wind generator maintenance cost (£/kW he)

n
 price of natural gas (£/kW h)

p
 difference between peak and base electricity demand

price from grid (£/kW he)

Pji
 processing time of task i of home j

q
 electricity selling price to grid (£/kW he)

TF

ji

latest finishing time of task i of home j
TS
ji
earliest starting time of task i of home j
vt
 wind speed at time t (m/s)

Vnom
 nominal wind speed (m/s)

Vcut-in
 cut-in wind speed (m/s)

Vcut-out
 cut-out wind speed (m/s)

wt
 output from wind generator at time t (kWe)

a
 CHP heat-to-power ratio

d
 time interval duration (h)

q
 air density (kg/m3)

gB
 boiler efficiency

gCHP
 CHP generator electrical efficiency

gE
 electrical storage charge/discharge efficiency

gT
 thermal storage charge/discharge efficiency

gW
 wind generator power coefficient

j
 agreed electricity peak demand threshold from grid

(kWe)
Variables

ft
 thermal storage discharge rate at time t (kWth)

gt
 thermal storage charge rate at time t (kWth)

It
 electricity imported from the grid at time t (kWe)

Rt
 electricity exported to the grid at time t (kWe)

SIE
 initial state of electrical storage (kW he)

SIT
 initial state of thermal storage (kW hth)
SE
t

electricity in storage at time t (kW he)
ST
t

heat in storage at time t (kW hth)
ut
 electricity output from CHP generator at time t (kWe)

xt
 heat output from boiler at time t (kWth)

yt
 electrical storage discharge rate at time t (kWe)

zt
 electrical storage charge rate at time t (kWe)

/
 daily total cost of the smart building (£)

ct
 extra electricity load from grid over the agreed

threshold j at time t (kWe)
Binary variables

Ejit
 1 if task i of home j starts at time t, 0 otherwise
Next, the constraints involved in the proposed mathematical
model are described:

3.1. Capacity constraint

The output from each equipment should not exceed its de-
signed capacity,

CHP generator:

ut 6 CCHP 8t ð1Þ

Boiler:

xt 6 CB 8t ð2Þ

Electrical storage:

SE
t 6 CE 8t ð3Þ

Thermal storage:

ST
t 6 CT 8t ð4Þ
3.2. Energy storage constraints

Electricity stored in the electrical storage at time t is equal to
the amount stored at t � 1 plus the electricity charged minus the
electricity discharged. Electricity would be lost during the charging
and discharging process, for example during any period when
amount of electricity dzt is sent to the electrical storage, only dgEzt

will be charged, and the rest being lost, where gE is turn-around
efficiency of electrical storage. Meanwhile, during the discharging
process, in order to send dyt of electricity to the user, dyt/gE of elec-
tricity is needed.

SE
t ¼ SE

t�1 þ dgEzt � dyt=gE 8t ð5Þ

The electrical storage has an initial storage state at the begin-
ning of each sample day. At the end of each day, the electrical stor-
age must return to its initial value, so as to avoid net accumulation.
The initial storage state value is optimised through the model to
decide the best initial state for 1 day utilisation. Otherwise, the ini-
tial state can be obtained from the previous day and at the end of
the day, the electrical storage must return to be over certain lower
limit to protect the equipment.

SE
0 ¼ SE

T ¼ SIE ð6Þ
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The rates of discharge or charge of electricity cannot exceed the
electrical storage discharge and charge limits defined by the bat-
tery manufacturer, in order to prevent excessive discharge/charge
rates that would damage the battery or reduce its capacity:

yt 6 DE 8t ð7Þ

zt 6 CE 8t ð8Þ

Heat stored in the thermal storage at time t is equal to the
amount stored at t � 1 plus the heat charged minus the heat dis-
charged. The heat loss during the heat storage process is repre-
sented in the same way as shown for the electrical storage.

ST
t ¼ ST

tt�1
þ dgT gt � dft=gT 8t ð9Þ

Stored heat must return to the initial state at the end of the day
so that no heat is accumulated over 1 day. The initial storage state
value is also optimised through the model.

ST
0 ¼ ST

T ¼ SIT ð10Þ

The rates of discharge and charge of heat cannot exceed the
thermal storage discharge and charge limits based on the type of
storage medium, mass and latent heat of the material:

ft 6 DT 8t ð11Þ

gt 6 GT 8t ð12Þ
3.3. Wind generator ouput

The electricity output from the wind generators is calculated
from the wind power generation equation, based on the wind gen-
erator blade area, wind speed and wind generator efficiency. The
power output is constrained by both cut-in speed and cut-out
speed in the model. The cut-in speed is the minimum wind speed
at which the wind turbine will generate its designated rated
power. While the cut-out speed is wind speed at which the wind
generator would be shut down for the safety reasons in order to
protect the wind turbine from damage [39].

wt ¼
0:5qAgW minðv t ;V

nomÞ3 8t : Vcut�in
6 v t 6 Vcut�out

0 8t : v t 6 Vcut�in and v t P Vcut�out

(

ð13Þ
3.4. Energy balances

In each time interval, the total electricity consumption is the
sum of the power consumption capacities from all tasks of all
homes. The electricity consumed during each time period is sup-
plied by the wind generator, CHP generator, electricity received
from the electrical storage and grid, minus electricity sent to the
electrical storage and grid. If the power consumption capacity of
task i is constant, then the electricity balance can be represented
as Eq. (14). But the power consumption capacity of some tasks var-
ies over the operation time intervals, e.g. washing machine has dif-
ferent capacity profiles over washing and spinning processes. Eq.
(14a) is more appropriate for such case, in which the electricity
consumption is summed over the task operation periods h.X

j

X
i

CiEjit ¼ wt þ ut þ yt þ It � zt � Rt 8t ð14Þ

X
j

X
i

XPji�1

h¼0

CihEji;t�h ¼ wt þ ut þ yt þ It � zt � Rt 8t ð14aÞ
The heat consumed during each time period is equal to heat
supplied by the CHP generator, boiler, heat received from the ther-
mal storage, minus heat sent to the thermal storage.

Ht ¼ aut þ xt þ ft � gt 8t ð15Þ
3.5. Starting time and finishing time

The operation time of each task must be within the given time
window. The starting time of each task cannot be earlier than the
given earliest starting time, and must finish before the latest finish-
ing time. For each task from each home, it has to be started once.X
TS

ji6t6TF
ji�Pji

Ejit ¼ 1 8j; i ð16Þ
3.6. Peak demand charge

There is also a desire to reduce the electricity peak demand
from the grid to avoid the need for high capacity in the macro-
grid–microgrid connection (and to avoid charges levied by the Sys-
tem Operator for consumption at times of macrogrid peak). One
way to achieve this is to increase the grid tariff rate for the high
electricity load periods, and thus motivating consumers to redis-
tribute or reduce their electricity consumption [40]. In order to re-
flect this, in our approach, an extra constraint, Eq. (17), is
introduced in the model. For each time interval, when electricity
load from grid is below the agreed threshold j, the normal electric-
ity price is applied. But when electricity load from grid is over the
agreed threshold j, the additional amount, ct over threshold value,
is charged with an extra rate.

ct P It � j 8t ð17Þ
3.7. Objective function

The objective function is to minimise the total daily cost, which
includes: the operation and maintenance cost of the CHP genera-
tor, wind generator, boiler, electrical storage and thermal storage;
the cost of electricity purchased from the grid; the revenue from
electricity sold to the grid. Since the equipment capacities are
fixed, their capital costs are independent of the schedule and are
therefore not considered. If only the real-time pricing is applied,
the total cost is calculated as in

/ ¼
X

t

dnut=a CHP operation cost

þ
X

t

dmW wt wind turbine maintenance cost

þ
X

t

dnxt=gB boiler operation cost

þ
X

t

dmEyt electrical storage maintenance cost

þ
X

t

dmT ft thermal storage maintenance cost

þ
X

t

dbtIt electricity buying cost from grid

�
X

t

dqRt revenue from electricity selling to grid ð18aÞ

When peak demand charge scheme is applied, the total daily
cost is calculated as in Eq. (18b). Below the threshold, the electric-
ity price follows the real-time electricity price but when the de-
mand is over the threshold extra cost is assigned to the
additional electricity amount.
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/ ¼
X

t

dnut=a CHP operation cost

þ
X

t

dmW wt wind turbine maintenance cost

þ
X

t

dnxt=gB boiler operation cost

þ
X

t

dmEyt electrical storage maintenance cost

þ
X

t

dmT ft thermal storage maintenance cost

þ
X

t

dbtIt electricity buying cost from grid

þ
X

t

dpct peak demand extra charge from grid

�
X

t

dqRt revenue from electricity selling to grid ð18bÞ
4. Illustrative examples

In this section, the proposed MILP model for energy consump-
tion scheduling is applied to two numerical examples: (i) a smart
building of 30 homes with same living habits and (ii) a smart build-
ing of 90 homes with different living habits.
4.1. Example 1: Smart building of 30 homes with same living habits

Example 1 considers a smart building system with 30 homes
with the following distributed energy resources, and their capaci-
ties are obtained according to the total energy demand while the
technical parameters and costs are obtained from [12]:

� one CHP generator with a capacity of 20 kWe and electrical effi-
ciency of 35%. Heat to power ratio is assumed to be equal to 1.3,
and natural gas cost is 2.7 p/kW h;
� one wind farm with a capacity of 10 kWe and a maintenance

cost of 0.5 p/kW he;
� one boiler with capacity of 120 kWth and natural gas cost is

2.7 p/kW h;
� one electrical storage unit with a capacity of 10 kWhe, charge/

discharge efficiency of 95%, discharge limit and charge limit
are both 10 kWe, and the maintenance cost is 0.5 p/kW he;
� one thermal storage unit with a capacity of 20 kWhth; charge/

discharge efficiency of 98%, discharge limit and charge limit
are both 20 kWth, and the maintenance cost is 0.1 p/kW hth;
� a grid connection (allowing import and export of electricity

when operating parallel to grid); the real-time electricity price
at different times is collected from Balancing Mechanism
Reporting System [41] as shown in Fig. 2. When electricity
demand from grid is over 30 kWe, an extra cost of 5 p/kW he

is charged to the additional electricity. Electricity may also be
sold to the grid with 1 p/kW he;

Each time interval considered is half an hour. So in total, there
are 48 time intervals for a single day. The total heat demand profile
is generated for a building with floor area of 2500 m2 on a sample
winter day using CHP Sizer Version 2 Software [42]. For the elec-
tricity demand, each home has 12 basic tasks that consume elec-
tricity as shown in Table 1. These tasks are available to be
scheduled according to the given earliest starting time, latest fin-
ishing time, their respective duration and power requirements
[43]. All tasks, except the dishwasher and washing machine, have
constant power consumption rates given in the table. The electrical
profiles for dish washer and washing machine are shown in Fig. 3.
Also it is assumed that all homes have the same living habits and
every task has to be performed once a day.

There are 10 identical wind generators in the wind farm, with a
power coefficient of 45% [39]. The blade diameter is 1.6 m and the
wind speed is generated from a Weibull distribution using MATLAB
with a mean velocity of 7 m/s. The cut-in and cut-out wind speeds
are assumed to be 5 m/s and 25 m/s, respectively, and the nominal
wind speed is taken as 12 m/s. The wind generators do not produce
any power when the wind speed is under the cut-in speed or above
the cut-out speed. When the wind speed is above the nominal
wind speed, the power output is at the maximum output, which
is equal to the output produced at the nominal wind speed. Be-
tween cut-in and cut-out nominal wind speed, the wind generator
power output varies according to Eq. (13).
4.2. Example 2: Smart building of 90 homes with different living habits

Example 2 considers a smart building with 90 homes and it has
the same distributed energy resources as those in Example 1, but
with tripled equipment capacities, and heat demand and peak de-
mand threshold from grid are also tripled. There are still 12 electri-
cal tasks for each home, and task processing duration, time
window length and power consumption rate are the same as those
in Example 1. The main difference is that the 90 homes have differ-
ent living habits. The earliest starting time for each task of each
home is generated randomly based on the modified hourly opera-
tion probability distribution as given in [44]. Only the operation
hours with a probability higher than 5% are selected and then
the hourly operation possibility is redistributed accordingly. The
modified earliest starting time hourly probability distribution for
the 12 electrical consumption tasks is presented in Fig. 4, where
y axis represents the probability percentage. Some tasks have the
same hourly probability distribution, so only one distribution plot
is presented for each type of tasks.
5. Computation results

Two pricing schemes have been applied for both examples
above, which are real-time price scheme and peak demand price
schemes. For the real-time price scheme, the objective is to mini-
mise the total daily cost under real-time electricity prices as shown
in Eq. (18a), subject to Eqs. (1)–(13) and (14a)–(16). While for the
peak demand price scheme, the objective is to minimise the total
daily cost together with the extra cost charged for over consumed
electricity from the grid as described by Eq. (18b), subject to Eqs.
(1)–(13) and (14a)–(17).

For each pricing scheme, four scenarios are deployed, which are
(a) macrogrid earliest starting time, (b) macrogrid optimised
scheduling, (c) microgrid earliest starting time and (d) microgrid
optimised scheduling. Abbreviations are used to indicate the



Table 1
Electricity consumption for tasks in Example 1 [43].

Task Power (kW) Earliest starting time (h) Latest finishing time (h) Time window length (h) Duration (h)

Dishwasher – 9 17 8 2
Washing machine – 9 12 3 1.5
Spin dryer 2.5 13 18 5 1
Cooker hob 3 8 9 1 0.5
Cooker oven 5 18 19 1 0.5
Microwave 1.7 8 9 1 0.5
Interior lighting 0.84 18 24 6 6
Laptop 0.1 18 24 6 2
Desktop 0.3 18 24 6 3
Vacuum cleaner 1.2 9 17 8 0.5
Fridge 0.3 0 24 – 24
Electrical car 3.5 18 8 14 3
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Fig. 3. Electricity utilisation profiles of dishwasher and washing machine.
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combinations of pricing scheme and scenario, e.g. RMO2 is short for
real-time price scheme macrogrid optimised scheduling scenario
while PmE represents peak demand price scheme microgrid earliest
starting time scenario.

In the macrogrid scenarios (a, b), electricity is solely bought
from grid and heat is produced only by boiler. There is no other
DER to provide electricity or heat to the building. For the microgrid
scenarios (c, d), DERs are available to provide local electricity and
heat. The earliest starting scenario (a scheduling heuristic) means
all the domestic electricity appliances are turned on at their given
earliest starting time, which is similar to common living habits. For
example, the washing machine would be turned on as soon as peo-
ple want to do some washing, most likely when leaving home for
work in the morning. When task operation within time window
is allowed in the optimised scheduling scenario, the domestic tasks
operation order as well as the equipment operation time could be
scheduled in order to minimise the total cost (Eqs. (18a) or (18b)).
Tasks, such as interior lighting and fridge, have fixed electricity
consumption time period and have no other alternatives. Tasks
with flexible operation time can be scattered as much as possible
to avoid electricity consumption peak and utilise electricity gener-
ated from local generators as much as possible. Also, when electric-
ity is cheaper from grid, it will be imported from the grid instead of
being generated from generators which could also be stored in the
battery for later use.
5.1. Example 1: real-time price and peak demand price schemes

The planning horizon for both examples is from 8 am in a day to
8 am on the next morning. The optimal electricity balance and total
daily cost resulting from Example 1 under the real-time price
scheme is shown in Fig. 5. Under the RMO scenario, the tasks are
scheduled based on the real-time electricity pricing. Tasks are pre-
ferred to be performed when electricity price is low, e.g. during
night time. The total cost is reduced from £154 in the RME scenario
to £137 in the RMO scenario. The electricity demand from the grid
is scattered while the peak demand from the grid is decreased from
301 kW in RME scenario to 186 kW in the RMO scenario. Under the
real-time price scheme for the RmE and RmO scenarios, the electri-
cal storage is used to store electricity when there is an excess; it is
mainly for utilising the wind generator output more efficiently.
There is no excess electricity sold to the utility grid in Example 1.
The total cost is reduced to £123 in the RmO scenario. With the
earliest starting time scenarios, the peak hours are mainly during
the evening when occupants are back from work. In the RmO
2 Format ‘xyz’ is used for abbreviation, where ‘x’ represents real-time price scheme
(R) or peak demand price scheme (P); ‘y’ represents macrogrid (M) or microgrid (m)
and ‘z’ represents earliest starting time (E) or optimised scheduling (O).
scenario, the peak demand from the grid is decreased from
270 kW in the RmE scenario to 153 kW in the RmO scenario, and
the electricity demand is flatter in RmO than RmE. During the
day, about 30% of the total electricity and 18% of total heat are
produced from the CHP in the RmE scenario and 45% of electricity
and 27% of heat are produced from the CHP in the RmO scenario.

The optimal electricity balance and total 1 day cost resulting
from Example 1 under peak demand price scheme is shown in
Fig. 6. When extra cost is charged for the over consumed electricity
from grid, the peak demand is reduced through optimisation.

Under the PMO scenario, the tasks are scattered according to
real-time prices and peak demand extra charge. The total cost for
PME scenario is £186 while it decreases to £157 when optimised
scheduling is applied in the PMO scenario. The peak demand from
grid is reduced to 184 kW. There are still peaks in the early morn-
ing and evening which cannot be avoided, mainly because of the
inflexible time window requirement for specific tasks. It happens
even in the PmO scenario although the demand pattern is smooth-
er. Under microgrid scenarios, the total cost is £165 in the PmE sce-
nario, which is further reduced to £127 in the PmO scenario. The
peak demand from the grid is reduced from 270 kW in the PmE
scenario to 121 kW in the PmO scenario. The demand pattern in
the PmO scenario is smoother than that in the PmE scenario.

The comparison between the real-time price scheme and peak
demand price scheme of Example 1 is presented in Table 2. It is
clearly shown that by applying the optimised scheduling scenarios,
the total cost is always lower than that of the earliest starting time
scenarios. When peak demand extra cost is considered, although
the total cost under each scenario is higher than that of the real-
time price scheme, the total peak demand over the whole day is
quite different. It can be seen from Figs. 5b and 6b, the electricity
demand over the day is flatter in Fig. 6b. The total peak demand
over the threshold has been reduced from 586 kW h in RMO



Fig. 4. Earliest starting time hourly probability distribution for electrical consumption tasks [44].
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scenario to 350 kW h in PMO scenario, satisfying the aim of the
peak demand schemes to reduce the peak demand from the grid.
It indicates that even without microgrid, the task starting time
scheduling can help in peak demand reduction and cost savings.
When microgrid is applied, more savings can be achieved and peak
demand from grid can be reduced further by obtaining electricity
from local DERs. By utilising microgrid and the peak demand price
scheme, the total cost is the lowest while highest peak demand
from the grid is reduced to 121 kW in PmO scenario (which is
153 kW in the RmO scenario). The total peak demand over the
Fig. 5. 30 homes: electricity balance and to
threshold of 30 kW in PmO scenario is 67 kW h, which represents
about 6% of the total electricity demand (1056 kW h).

The heat balances for microgrid scenarios are shown in Fig. 7.
Since all the heat in the macrogrid scenarios is provided by the boi-
ler and heat demand profile is the same under all scenarios, heat
balances for macrogrid scenarios are not presented. Under the
microgrid earliest starting time scenarios, the heat output from
CHP varies, while under the microgrid optimal scheduling scenar-
ios, the heat output from CHP is constant and CHP operates at its
full capacity.
tal cost under real-time price scheme.



Fig. 6. 30 homes: electricity balance and total cost under peak demand price scheme.

Table 2
Results of Example 1 under two pricing scheme.

Total cost (£) Peak demand from grid (kW) Total peak demand (kW h) CHP production (kW h) Peak demand over total demand (%)

RME 154 301 640 0 61
RMO 137 186 586 0 55
RmE 142 270 475 322 45
RmO 123 153 252 480 24
PME 186 301 640 0 61
PMO 157 184 350 0 33
PmE 165 270 473 322 45
PmO 127 121 67 480 6
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5.2. Example 2: real-time price and peak demand price schemes

The optimal electricity balance and total daily day cost resulting
from Example 2 under real-time price scheme are shown in Fig. 8.
Under the RMO scenario, all tasks are scheduled based on the real-
time electricity price to obtain minimum daily energy cost. The to-
tal cost is reduced to £409 in the RMO scenario, which is 12% cost
savings. As shown in Fig. 8b, task starting times are shifted to mid-
night when electricity price is low. The electricity demand from the
grid is scattered and the peak demand is decreased from 424 kW in
the RME scenario to 363 kW in the RMO scenario. Under the RmE
and RmO scenarios, equipment operation time from each tech-
nique is scheduled accordingly to minimise the total operation
cost. When time window is allowed, tasks with flexible operation
time are scattered as much as possible as in Example 1. The power
consumption peak periods are shifted to the early morning when
the electricity buying price is cheaper. The total cost is £354 in
the RmO scenario. The electrical storage is used to store electricity.
There is no excess electricity sold to the utility grid in Example 2.
This is mainly due to the small CHP capacity and cannot provide
extra electricity. Also, the electricity selling price to the grid is rel-
ative low. The boiler capacity can fulfill the peak heat demand, but
when the heat demand is over the boiler capacity and the electric-
ity demand is low, it is possible to sell electricity to grid from the
microgrid. In that case, CHP generator has to provide more electric-
ity than needed to cover the increased heat demand. The excess
electricity can be stored in battery for later use or sold to the grid.
However, when electrical storage is full, export to the grid is the
only option although the selling price is low. In the RmE and
RmO scenarios, the total costs are £409 and £354, respectively.
The electricity peak demand from the grid is decreased from
358 kW in the RmE scenario to 283 kW in the RmO scenario. Dur-
ing the day, about 37% of the total electricity and 22% of total heat
are produced from the CHP in the RmE scenario and 44% of electric-
ity and 26% of total heat are produced from the CHP in the RmO
scenario. The total electricity demand of the smart building is
3169 kW h.

The optimal electricity balance and total daily cost resulting
from Example 2 under peak demand price scheme are shown in
Fig. 9. When the extra cost is charged for the over consumed elec-
tricity from the grid, the peak demand is reduced through task
scheduling. The total costs are £546 and £474 for the PME scenario
and PMO scenario. Under the PMO scenario, the peak demand from
grid is reduced to 340 kW compared to the PME scenario. The



Fig. 7. 30 homes: heat balance for microgrid scenarios.

Fig. 8. 90 homes: electricity balance and total cost under real-time price scheme.
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Fig. 9. 90 homes: electricity balance and total cost under peak demand price scheme.

Table 3
Results of Example 2 under two pricing scheme.

Total cost
(£)

Peak demand from grid
(kW)

Total peak demand
(kW h)

CHP production
(kW h)

Peak demand over total demand
(%)

RME 464 424 1646 0 52
RMO 409 363 1566 0 49
RmE 409 358 902 1183 28
RmO 354 283 738 1393 23
PME 546 424 1646 0 52
PMO 474 340 1191 0 38
PmE 454 358 880 1183 28
PmO 378 250 360 1401 11
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energy consumption peaks are in the mid-night instead of the
evening in this scenario. Since there is no DER to provide electric-
ity, the tasks are scattered as much as possible to reduce the peak
demand extra charge over the threshold at 90 kW. Under microgrid
scenarios, PmE scenario and PmO scenario, the total costs are both
lower than that from the macrogrid scenarios, which are £454 and
£378, respectively. Also the peak demand from grid is reduced
from 358 kW in the PmE scenario to 250 kW in the PmO scenario.
The PmO scenario has the flattest electricity demand.

The comparison between the real-time and peak demand price
schemes of Example 2 is presented in Table 3. Similarly to Example
1, the total cost is always lower for the optimised scheduling sce-
narios than that of the earliest starting time scenarios. The total
cost under each scenario from peak price scheme is higher than
that of the real-time price scheme. As expected, the peak demand
price schemes reduce the peak demand from the grid. The highest
peak demand in the PMO scenario is smaller than that from the
RMO scenario, and the total daily peak demand has also been re-
duced. The electricity demand over the day in Fig. 9b is flatter than
that shown in Fig. 8b. The total peak demand over the threshold
has been reduced from 1566 kW h in the RMO scenario to
1191 kW h in the PMO scenario. The task starting time optimal
scheduling can reduce peak demand and achieve higher cost sav-
ings. Microgrid provides local electricity by utilising DERs, which
further reduce the peak demand from the grid and obtain more
savings. By applying microgrid and the peak demand price scheme
in the PmO scenario, the total cost is the lowest and the peak de-
mand from the grid is reduced to 250 kW (from 283 kW in the
RmO scenario). Total peak demand from the grid over the thresh-
old 90 kW in the PmO scenario is reduced to 360 kW h, which is
11% of the total electricity demand.

The heat balances for microgrid scenarios are shown in Fig. 10.
Under the earliest starting time scenarios, the heat output from
CHP varies, while under the optimal scheduling scenarios, the heat
output from CHP is constant except from the beginning of the day
and CHP almost operates at its full capacity.

5.3. Comparison between Example 1 and Example 2

By comparing with the scenarios where all tasks start at their
earliest possible starting time, there are obvious savings through
task starting time scheduling in both examples under the two



Fig. 10. 90 homes: heat balance for microgrid scenarios.

Table 4
Comparison between earliest starting time and optimised scheduling scenarios.

Example Scenario Cost savings (%) Peak demand savings (%)

1 RM(E–O) 11 9
Rm(E–O) 13 47
PM(E–O) 16 45
Pm(E–O) 23 86

2 RM(E–O) 12 5
Rm(E–O) 13 18
PM(E–O) 13 28
Pm(E–O) 17 59

Table 5
Model statistics.

Example Scenario Continuous
equations

Continuous
variables

Discrete
variables

CPU
(s)

1 RmO 1178 17,814 17,280 0.2
PmO 1226 17,862 17,280 0.3

2 RmO 1898 52,374 51,840 0.8
PmO 1946 52,422 51,840 1.3
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pricing schemes. Compared with the earliest starting time scenar-
ios, the cost savings and total peak demand savings from the grid
between earliest starting scenario by scheduling task starting time
are presented in Table 4 under different scenarios. With the real-
time price scheme, both examples have similar cost savings, while
under the peak demand scheme, Example 1 demonstrates more
cost savings. While Example 2 considers 90 homes with different
living habits and with different earliest starting time for flexible
tasks. So as expected, its average power peak is lower than that
from the same living habits assumed in Example 1, since the tasks
are scattered even without scheduling. As shown in Table 4, under
all scenarios Example 1 has higher peak demand savings percent-
age from the grid. In both examples, when microgrid is utilised,
the lowest cost saving is 13% while the lowest peak demand saving
is 18%. Microgrid application is an important alternative solution
for cost and peak demand reductions. There are peak demand
savings even only real-time price scheme is applied as shown in
Table 4. However, the peak demands are accidentally reduced
there resulting from task starting time optimised scheduling based
on electricity real-time price. When peak demand price scheme is
applied, the total peak demands from grid are minimised from
objective function, which are reduced by 86% and 59% in the peak
demand price scheme microgrid scenarios for Examples 1 and 2,
respectively.

The developed MILP model is implemented using CPLEX
12.4.0.1 in GAMS 23.9 (www.gams.com) on a PC with an Intel Core
2 Duo, 2.99 GHz CPU and 3.25 GB of RAM. The model statistics of
the microgrid optimised scheduling scenarios under the two pric-
ing schemes are presented in Table 5 for both examples, where
numbers of continuous equations, continuous and discrete vari-
ables and CPU time taken are presented. With an optimality gap
as 0.1%, even in Example 2, scheduling scenarios RmO and PmO re-
quire 0.8 CPU s and 1.3 CPU s, respectively, for the scheduling. It is
evident that the proposed MILP model is able to offer significant
cost savings and peak demand savings with very modest computa-
tional difficulties for smart buildings with the same living habit or
different ones.
6. Concluding remarks

An MILP model has been proposed for energy consumption and
operation management in a smart building with multiple smart
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homes. Two examples of 30 homes with same living habit and 90
with different living habits for a winter day have been studied.
Twelve domestic electrical tasks and equipment operations are
scheduled based on given time windows, real-time half-hourly grid
electricity prices and peak demand extra charge to obtain the min-
imum cost and energy demand. Significant cost savings and peak
demand savings have been achieved in both examples.

The power output from the wind generator varies according to
the weather conditions. The proposed MILP scheduling model can
use the power generated by wind generators when available, pro-
viding further savings for the customers. Under the optimised
scheduling scenario, the CHP generator is used more efficiently
and provides heat more steadily than under the earliest starting
time scenario. When the peak demand price scheme is applied,
the highest peak demand from the grid and total peak demand
over the threshold can significantly be reduced.

This power demand reduction has the benefit of releasing the
burden on the central grid and reducing the expense of upgrading
the current grid infrastructure to fulfill increasing energy demand.
The power demand reduction also depends on the family living
habits: for instance, if they prefer doing the washing during night
time when electricity price from the grid is cheaper, there will be
more savings. Without changing living habits totally, if the tasks
have wider time windows, the cost saving and peak demand shav-
ing could be further improved. On the other hand, when the
domestic task scheduling is implemented in real life, it could also
affect people’s behaviour and wider time windows may be pre-
ferred to obtain more cost savings.

In the area of smart grids, it is considered that there is two-way
communication between power supplier and customers. The
power will be distributed according to the demand and supply.
Traditional methods provide the customers only common flat elec-
tricity pricing while the smart grid could provide real-time elec-
tricity pricing. This model considers the problem from the point
of view of the customers, with a given real-time electricity price
profile over time. In the future, it might be possible to include this
model as part of a full smart grid model where the electricity price
is optimised along with the scheduling of tasks.
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